• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer
  • Home
  • About Us
  • What is AI?
  • AI Education
  • AI Jobs
  • Contact Page

010101

Artificial Intelligence Resources

  • AI Writing
  • AI Books
  • AI Movies
  • AI Tools
  • AI in the Media
  • AI Bill of Rights

How artificial intelligence can improve protein detection – Phys.org

March 13, 2023 by AVA Leave a Comment

Click here to sign in with or
Forget Password?
Learn more
share this!
22
18
Share
Email
March 13, 2023
by Max Planck Institute for the Science of Light
Small proteins play a critical role in the regulation of immune response, inflammation and neurodegenerative diseases. In order to better detect and study them, scientists at the Max-Planck-Institute for the Science of Light have combined one of the most effective microscopy methods, called iSCAT, with artificial intelligence.

Biological molecules such as proteins are central constituents of all living systems and dictate all physiological reactions in health and disease conditions. In particular, many small proteins play critical roles in the regulation of immune response, inflammation, and neurodegenerative disease. Fast and non-invasive protein detection methods can therefore help us create improvements in the areas of disease diagnosis and drug development.
Traditional protein detection methods involve labeling the protein with a fluorescent or radioactive tag, in order to track and detect them. However, these methods have been proven to be quite costly, and time-consuming. Even more problematic is the fact that these labels may alter the function of the studied protein, rendering any gathered data unreliable. As scientific interest in the functions of proteins has increased in recent years, so has the interest in label-free detection methods. One such method, which is now widely regarded as one the most effective and sensitive label-free and real-time protein detection techniques, is interferometric scattering microscopy (iSCAT).
iSCAT is based on the sensitive detection of light scattered by individual proteins through interferometry. As individual proteins sediment out of a buffer onto a cover glass, the tiny shadow of the protein cast on a camera gives information about its size and mass. Hence, the method is also known as mass photometry. However, a combination of technical noise sources and speckle-like background fluctuations has previously limited the sensitivity of iSCAT detection to proteins larger than about 40 KDa.

Using AI to move the boundaries of microscopy

In order to push the sensitivity of iSCAT even further, a team from MPL around the managing director Vahid Sandoghdar composed of electrical engineer Mahyar Dahmardeh, computer scientist Houman Mirzaalian and physical chemist Hisham Mazal has collaborated with Harald Köstler from the Friedrich-Alexander-Universität Erlangen Nürnberg (FAU) to employ two machine-learning techniques for detecting proteins at only10 kDa or less.

In a paper published in Nature Methods, they showed how they can use the iForest algorithm in combination with the FastDVDnet technique to achieve this result. Both are so-called unsupervised machine learning techniques, meaning they do not need to first be trained on a labeled dataset. Unsupervised machine learning is highly desirable in microscopy because it allows identifying patterns and relationships in large data sets without knowing the underlying imaging model. This is especially important when the detection limit is at the edge of the noise level and there is a lack of labeled data to train the network.
FastDVDnet is an advanced image-denoising technique that removes noise from microscopy images using deep neural networks. It is optimized for parallel processing, allowing it to process very large data sets in a relatively short amount of time. In this case, the researchers used FastDVDnet to identify iSCAT images of proteins from the recorded video sequences. Spatiotemporal features extracted by FastDVDnet were then used by iForest to cluster the iSCAT data.
The isolation Forest (iForest) unsupervised machine learning algorithm is commonly used for anomaly detection tasks. It is especially well-suited for microscopy because it can handle high-dimensional data with a large number of features, resulting in more accurate and comprehensive results. This is especially useful when analyzing microscopy data, where identifying rare or abnormal features become important. For example, iForest anomaly detection can be used to detect the presence of rare structures within a biological tissue or to identify cells with unusual morphologies. This algorithm can assist in identifying rare or unusual features that traditional analysis methods might very well overlook.
Professor Vahid Sandoghdar reminisces about the hard work by his team, but he is also already looking forward to the next challenge: “We have come a long way since our first report of label-free small protein detection in Nature Communications in 2014. We are determined to push the detection limit further both by improving the physical measurement methods and by developing more sophisticated machine learning algorithms. There is really no fundamental reason why we should not be able to detect molecules below 1kDa, coming close to the weight of even a single lipid molecule.”

More information: Mahyar Dahmardeh et al, Self-supervised machine learning pushes the sensitivity limit in label-free detection of single proteins below 10 kDa, Nature Methods (2023). DOI: 10.1038/s41592-023-01778-2

Journal information: Nature Communications , Nature Methods

Provided by Max Planck Institute for the Science of Light

Citation: How artificial intelligence can improve protein detection (2023, March 13) retrieved 13 March 2023 from https://phys.org/news/2023-03-artificial-intelligence-protein.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.

More information: Mahyar Dahmardeh et al, Self-supervised machine learning pushes the sensitivity limit in label-free detection of single proteins below 10 kDa, Nature Methods (2023). DOI: 10.1038/s41592-023-01778-2

Journal information: Nature Communications , Nature Methods

Journal information: Nature Communications , Nature Methods
Provided by Max Planck Institute for the Science of Light
Explore further
Facebook
Twitter
Email
Feedback to editors
6 hours ago
0
6 hours ago
0
7 hours ago
0
7 hours ago
0
8 hours ago
0
58 minutes ago
58 minutes ago
1 hour ago
1 hour ago
1 hour ago
1 hour ago
3 hours ago
3 hours ago
3 hours ago
3 hours ago
Feb 8, 2023
Jan 13, 2023
Feb 18, 2020
Jan 23, 2023
Jan 30, 2023
May 9, 2022
3 hours ago
7 hours ago
8 hours ago
6 hours ago
6 hours ago
6 hours ago
Use this form if you have come across a typo, inaccuracy or would like to send an edit request for the content on this page. For general inquiries, please use our contact form. For general feedback, use the public comments section below (please adhere to guidelines).
Please select the most appropriate category to facilitate processing of your request
Thank you for taking time to provide your feedback to the editors.
Your feedback is important to us. However, we do not guarantee individual replies due to the high volume of messages.
Your email address is used only to let the recipient know who sent the email. Neither your address nor the recipient’s address will be used for any other purpose. The information you enter will appear in your e-mail message and is not retained by Phys.org in any form.

Get weekly and/or daily updates delivered to your inbox. You can unsubscribe at any time and we’ll never share your details to third parties.
More information Privacy policy
Medical research advances and health news
The latest engineering, electronics and technology advances
The most comprehensive sci-tech news coverage on the web
This site uses cookies to assist with navigation, analyse your use of our services, collect data for ads personalisation and provide content from third parties. By using our site, you acknowledge that you have read and understand our Privacy Policy and Terms of Use.

source

Filed Under: Uncategorized

Reader Interactions

Leave a Reply

You must be logged in to post a comment.

Primary Sidebar

Recent Posts

🌱 ChatGPT Artificial Intelligence App + Child And Family Well-Being – Patch

Hello everyone! I'm back with your fresh copy of the San Diego Patch newsletter. … [Read More...] about 🌱 ChatGPT Artificial Intelligence App + Child And Family Well-Being – Patch

  • How ChatGPT Is Fast Becoming The Teacher's Pet – Forbes
  • Evidence of a cognitive bias in the quantification of COVID-19 with CT: an artificial intelligence randomised clinical trial … – Nature.com
  • How AI will change the way we work – Yahoo Finance

Follow Us Online

  • Facebook
  • LinkedIn

Ads, Of Course

Footer

Main Nav

  • Home
  • About Us
  • What is AI?
  • AI Education
  • AI Jobs
  • Contact Page

Secondary Nav

  • AI Writing
  • AI Books
  • AI Movies
  • AI Tools
  • AI in the Media
  • AI Bill of Rights

Copyright © 2023 · 010101.ai · Website by Amador Marketing