• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer
  • Home
  • About Us
  • What is AI?
  • AI Education
  • AI Jobs
  • Contact Page

010101

Artificial Intelligence Resources

  • AI Writing
  • AI Books
  • AI Movies
  • AI Tools
  • AI in the Media
  • AI Bill of Rights

Artificial intelligence approach may help identify melanoma survivors who face a high risk of cancer recurrence: The method may help clinicians determine which patients would likely benefit from aggressive treatment even at early stages of disease – Science Daily

November 23, 2022 by AVA Leave a Comment

Most deaths from melanoma — the most lethal form of skin cancer — occur in patients who were initially diagnosed with early-stage melanoma and then later experienced a recurrence that is typically not detected until it has spread or metastasized.
A team led by investigators at Massachusetts General Hospital (MGH) recently developed an artificial intelligence-based method to predict which patients are most likely to experience a recurrence and are therefore expected to benefit from aggressive treatment. The method was validated in a study published in npj Precision Oncology.
Most patients with early-stage melanoma are treated with surgery to remove cancerous cells, but patients with more advanced cancer often receive immune checkpoint inhibitors, which effectively strengthen the immune response against tumor cells but also carry significant side effects.
“There is an urgent need to develop predictive tools to assist in the selection of high-risk patients for whom the benefits of immune checkpoint inhibitors would justify the high rate of morbid and potentially fatal immunologic adverse events observed with this therapeutic class,” says senior author Yevgeniy R. Semenov, MD, an investigator in the Department of Dermatology at MGH.
“Reliable prediction of melanoma recurrence can enable more precise treatment selection for immunotherapy, reduce progression to metastatic disease and improve melanoma survival while minimizing exposure to treatment toxicities.”
To help achieve this, Semenov and his colleagues assessed the effectiveness of algorithms based on machine learning, a branch of artificial intelligence, that used data from patient electronic health records to predict melanoma recurrence.
Specifically, the team collected 1,720 early-stage melanomas — 1,172 from the Mass General Brigham healthcare system (MGB) and 548 from the Dana-Farber Cancer Institute (DFCI) — and extracted 36 clinical and pathologic features of these cancers from electronic health records to predict patients’ recurrence risk with machine learning algorithms. Algorithms were developed and validated with various MGB and DFCI patient sets, and tumor thickness and rate of cancer cell division were identified as the most predictive features.
“Our comprehensive risk prediction platform using novel machine learning approaches to determine the risk of early-stage melanoma recurrence reached high levels of classification and time to event prediction accuracy,” says Semenov. “Our results suggest that machine learning algorithms can extract predictive signals from clinicopathologic features for early-stage melanoma recurrence prediction, which will enable the identification of patients who may benefit from adjuvant immunotherapy.”
Additional Mass General co-authors include Ahmad Rajeh, Michael R. Collier, Min Seok Choi, Munachimso Amadife, Kimberly Tang, Shijia Zhang, Jordan Phillips, Nora A. Alexander, Yining Hua, Wenxin Chen, Diane, Ho, Stacey Duey, and Genevieve M. Boland.
This work was supported by the Melanoma Research Alliance, the National Institutes of Health, the Department of Defense, and the Dermatology Foundation.
Story Source:
Materials provided by Massachusetts General Hospital. Note: Content may be edited for style and length.
Journal Reference:
Cite This Page:
Get the latest science news with ScienceDaily’s free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:
Keep up to date with the latest news from ScienceDaily via social networks:
Tell us what you think of ScienceDaily — we welcome both positive and negative comments. Have any problems using the site? Questions?

source

Filed Under: Uncategorized

Reader Interactions

Leave a Reply

You must be logged in to post a comment.

Primary Sidebar

Recent Posts

🌱 ChatGPT Artificial Intelligence App + Child And Family Well-Being – Patch

Hello everyone! I'm back with your fresh copy of the San Diego Patch newsletter. … [Read More...] about 🌱 ChatGPT Artificial Intelligence App + Child And Family Well-Being – Patch

  • Most Jobs Soon To Be ‘Influenced’ By Artificial Intelligence, Research Out Of OpenAI And University Of Pennsylvania Suggests – Forbes
  • Microsoft Wants To Restrict Artificial Intelligence, But Not To Protect … – Giant Freakin Robot
  • Guidelines for Using Artificial Intelligence Are Released by The ICMR – Analytics Insight

Follow Us Online

  • Facebook
  • LinkedIn

Ads, Of Course

Footer

Main Nav

  • Home
  • About Us
  • What is AI?
  • AI Education
  • AI Jobs
  • Contact Page

Secondary Nav

  • AI Writing
  • AI Books
  • AI Movies
  • AI Tools
  • AI in the Media
  • AI Bill of Rights

Copyright © 2023 · 010101.ai · Website by Amador Marketing