About us | Advertise with us | Contact us
Posted: 15 December 2022 | Aida Tayebi (University of Central Florida), Dr Ozlem Ozmen Garibay (University of Central Florida) | No comments yet
Using a natural language-inspired technique, researchers at the University of Central Florida, US, developed an interpretable and generalisable drug target interaction model that achieves 97 percent accuracy in identifying drug candidates for a broad variety of target proteins. Here, Dr Ozlem Ozmen Garibay and Aida Tayebi, who worked on the study, outline their work and how their findings could shape drug discovery.
Drug target interaction (DTI) prediction tasks performed in vitro can be expensive and time consuming. In silico approaches have been used to reduce both cost and time to discover drugs virtually by screening previously known drugs for new treatments and new purposes. This is also known as drug repurposing. Virtual screening reduces the vast molecular interaction landscape to focus the further discovery on potentially promising candidate drugs. Additionally, it can also accelerate the drug discovery process for a new target and disease by repurposing previously known drugs that have already passed clinical trial studies for their effectiveness, safety and side effects and are therefore approved by the US Food and Drug Administration (FDA). Computational screening narrows the list of candidate drugs for further in vitro and in-lab experiments.
A new artificial intelligence (AI)-based DTI model developed by researchers at the University of Central Florida, has sped up the drug screening process against the COVID-19 virus. This research, published in Briefing in Bioinformatics,1 was conducted through an interdisciplinary collaboration between computer scientists and material scientists. This model, known as AttentionSiteDTI, is inspired by models developed for sentence classification in the field of natural language processing (NLP). It is also the first model that uses the pair of drug and target as a biochemical sentence, with relational meaning between protein pockets and drug molecules which is the key to capture the most valuable contextual semantic or relational information of the sentence. Furthermore, the AttentionSiteDTI model enables an end-to-end graph convolutional neural network model that learns embeddings from the graphs of small molecules and proteins which are not fixed and are sensitive to context similar in NLP.
The researchers outperformed other state‑of‑the‑art studies in predicting the interaction between drug and target and have identified candidates by using deep learning with a self‑attention mechanism to extract the features that rule the most in the complex interaction. They have proved high interpretability through the self-attention mechanism by focusing on the most important parts of the protein interacting with the drug compounds (binding sites); for example, those that contribute the most towards the interaction and high generalisability through the protein input representation that uses protein pockets in the form of graphs.
This is a critical step in the design and development of new drugs to know which biological properties of the compound governs the interaction. According to the study, a benefit of utilising graph convolutional networks is their robustness to different orientations of the three‑dimensional (3D) structures of proteins, however a drawback to this is to find high-quality 3D protein structure.
In this study, the 3D protein structures were extracted from the protein data bank (PDB) which provides all the experimental methods such as nuclear magnetic resonance (NMR), X-ray diffraction and cryogenic-electron microscopy (cryoEM). The binding sites were extracted through a docking-based model which was previously studied. This method provides bounding box co‑ordination for each binding site of a protein. Next, they are used to convert the protein structure to a set of peptide fragments. Then the graph of protein is constructed by each atom acting as a node and the connections between atoms acting as edges. The feature vector of each atom, one‑hot encoding of atom type, atom degree, total number of hydrogen atoms and implicit valence of the atom are also reported in the form of a vector. The Simplified Molecular-Input Line-Entry system (SMILE) of the drug compounds were also represented in the form of graphs in a way that each atom in the small molecule is represented as a node of the graph and the connections between them are represented as edges. In addition, the graph’s atom features using one-hot encoding of atom type, atom degree, formal charge of the atom, number of radical electrons of the atom, the atom’s hybridisation, atom’s aromaticity and number of total hydrogens of the atom are also reported in the form of a vector.
One-dimensional representation is insufficient for complex interactions, particularly for proteins, which are much larger and more complex molecules than drugs. The improved performance of this model is due to the use of graph representations, which are an advanced feature representation and can significantly affect the model’s performance in capturing the structural information of molecules. According to this study, traditional machine learning and deep learning methods that use string representations cannot learn complex non‑linear relationships in drug target interaction. The self‑attention mechanism aids the AttentionSiteDTI model to extract the features automatically and to learn higher order non-linear relationships. The team used three benchmark datasets, DUD-E, Human and BindingDB, to compare the new model with state‑of-the-art graph-based models. AttentionSiteDTI performs comparably well against the state-of-the-art DTI prediction models when using a target protein that the prediction models are trained on. However, when the target protein is changed to another that the models have not been trained on, the performance of AttentionSiteDTI remains robust while the performance of the other models decreases significantly, which indicates a greater degree of generalisability achieved by the new model. This is important because it highlights the AttentionSiteDTI model can be used for a broad variety of protein targets with high performance.
This study is significant since it will assist other researchers to accelerate the drug design by identifying the binding sites’ functional properties. Drug designers can use AI and quickly act in response to new diseases and pandemics such as COVID-19, focusing on the most important binding sites of the virus’s protein. They are able to screen many variations of the protein and small molecules using AI to get accurate predictions of the binding before doing any laboratory experiments.
Furthermore, the team evaluated the binding between spike protein (along with ACE2 protein) of the SARS-CoV-2 virus and the seven candidate compounds (N-acetyl-neuraminic acid, 3α,6α‑Mannopentaose, N-glycolylneuraminic acid, 2-Keto3-deoxyoctonate, N-acetyllactosamine, cytidine5- monophospho-N-acetylneuraminic acid sodium salt and Darunavir) using a binding inhibition assay kit. The strength of the interaction was measured through laboratory experiments in the form of IC50 (half maximal inhibitory concentration) between the pair of drug and target. In this study, candidate molecules were used as inhibitors of the spike protein-ACE2 complex formation. The activity threshold was set at 15nM to identify the best compounds. This evaluation and comparison proved high agreement between computational prediction and experiment results. This shows the potential of the AttentionSiteDTI model in providing the drug designers with an effective tool to pre-screen small molecules in drug repurposing applications for the current pandemic, as drugs to treat COVID are still of interest and to be prepared for future possible pandemics. Dr Ozlem Ozmen Garibay is an Assistant Professor of Industrial Engineering and Management System at the University of Central Florida where she directs the Human‑Centered Artificial Intelligence Research Lab (Human‑CAIR Lab). Prior to that, she served as the Director of Research Technology. Her areas of research are big data, social media analysis, social cybersecurity, artificial social intelligence, human‑machine teams, social and economic networks, network science, STEM education analytics, higher education economic impact and engagement, artificial intelligence, evolutionary computation and complex systems.
Aida Tayebi is a second year PhD student at University of Central Florida. Her current research interests include Algorithmic Fairness and bias mitigation techniques in DTI.
Related topics
Artificial Intelligence, Drug Discovery, Drug Discovery Processes, Drug Targets, Informatics, Lab Automation, Technology
Related conditions
Covid-19
Related organisations
US Food and Drug Administration (FDA)
By Aida Tayebi (University of Central Florida), Dr Ozlem Ozmen Garibay (University of Central Florida)
15 December 2022
No comments yet
Issue #4 2022
Artificial Intelligence, Drug Discovery, Drug Discovery Processes, Drug Targets, Informatics, Lab Automation, Technology
Covid-19
US Food and Drug Administration (FDA)
All subscriptions include online membership, giving you access to the journal and exclusive content.
By Standard BioTools
By Dr Aaron Daughtery
By Dr Christy Comeaux (Janssen)
By Izzy Wood (Drug Target Review), Ria Kakkad (Drug Target Review)
By Izzy Wood (Drug Target Review)
Your email address will not be published.
This site uses Akismet to reduce spam. Learn how your comment data is processed.
Write for us | Advertise with us
T: +44 (0)1959 563311
F: +44 (0)1959 563123
Drug Target Review is published by:
Russell Publishing Ltd.
Court Lodge
Hogtrough Hill
Brasted, Kent, TN16 1NU
United Kingdom
© Russell Publishing Limited, 2010-2022. All rights reserved. Terms & Conditions | Privacy Policy | Cookie Policy
Website development by e-Motive Media Limited.
This website uses cookies to improve your experience while you navigate through the website. Out of these cookies, the cookies that are categorised as “Necessary” are stored on your browser as they are as essential for the working of basic functionalities of the website. For our other types of cookies “Advertising & Targeting”, “Analytics” and “Performance”, these help us analyse and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these different types of cookies. But opting out of some of these cookies may have an effect on your browsing experience. You can adjust the available sliders to ‘Enabled’ or ‘Disabled’, then click ‘Save and Accept’. View our Cookie Policy page.
Necessary cookies enable the core functionality of the website, including security, network management and accessibility. These cookies do not store any personal information. You may disable these by changing your browser settings, but this may affect how the website functions.
Cookie | Type | Duration | Description |
---|---|---|---|
cookielawinfo-checkbox-advertising-targeting | persistent | 1 year | The cookie is set by GDPR cookie consent to record the user consent for the cookies in the category “Advertising & Targeting”. |
cookielawinfo-checkbox-analytics | persistent | 1 year | This cookie is set by GDPR Cookie Consent WordPress Plugin. The cookie is used to remember the user consent for the cookies under the category “Analytics”. |
cookielawinfo-checkbox-necessary | persistent | 1 year | This cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category “Necessary”. |
cookielawinfo-checkbox-performance | persistent | 1 year | This cookie is set by GDPR Cookie Consent WordPress Plugin. The cookie is used to remember the user consent for the cookies under the category “Performance”. |
PHPSESSID | session | 1 year | This cookie is native to PHP applications. The cookie is used to store and identify a users’ unique session ID for the purpose of managing user session on the website. The cookie is a session cookies and is deleted when all the browser windows are closed. |
viewed_cookie_policy | persistent | 1 year | The cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data. |
zmember_logged | session | 1 year | This session cookie is served by our membership/subscription system and controls whether you are able to see content which is only available to logged in users. |
Advertising and targeting cookies help us provide our visitors with relevant ads and marketing campaigns.
Cookie | Type | Duration | Description |
---|---|---|---|
advanced_ads_browser_width | persistent | 1 month | This cookie is set by Advanced Ads and measures the browser width. |
advanced_ads_page_impressions | persistent | 2 years | This cookie is set by Advanced Ads and measures the number of previous page impressions. |
advanced_ads_pro_server_info | persistent | 1 month | This cookie is set by Advanced Ads and sets geo-location, user role and user capabilities. It is used by cache busting in Advanced Ads Pro when the appropriate visitor conditions are used. |
advanced_ads_pro_visitor_referrer | persistent | 1 year | This cookie is set by Advanced Ads and sets the referrer URL. |
bscookie | persistent | 2 years | This cookie is a browser ID cookie set by LinkedIn share Buttons and ad tags. |
IDE | persistent | 2 years | This cookie is set by Google DoubleClick and stores information about how the user uses the website and any other advertisement before visiting the website. This is used to present users with ads that are relevant to them according to the user profile. |
li_sugr | persistent | 3 months | This cookie is set by LinkedIn and is used for tracking. |
UserMatchHistory | persistent | 1 month | This cookie is set by Linkedin and is used to track visitors on multiple websites, in order to present relevant advertisement based on the visitor’s preferences. |
VISITOR_INFO1_LIVE | persistent | 5 months | This cookie is set by YouTube. Used to track the information of the embedded YouTube videos on a website. |
Analytics cookies collect information about your use of the content, and in combination with previously collected information, are used to measure, understand, and report on your usage of this website.
Cookie | Type | Duration | Description |
---|---|---|---|
bcookie | persistent | 2 years | This cookie is set by LinkedIn. The purpose of the cookie is to enable LinkedIn functionalities on the page. |
GPS | persistent | 30 minutes | This cookie is set by YouTube and registers a unique ID for tracking users based on their geographical location |
lang | session | 1 year | This cookie is set by LinkedIn and is used to store the language preferences of a user to serve up content in that stored language the next time user visit the website. |
lidc | persistent | 1 day | This cookie is set by LinkedIn and used for routing. |
lissc | persistent | 11 months | This cookie is set by LinkedIn share Buttons and ad tags. |
vuid | persistent | 2 years | We embed videos from our official Vimeo channel. When you press play, Vimeo will drop third party cookies to enable the video to play and to see how long a viewer has watched the video. This cookie does not track individuals. |
wow.anonymousId | persistent | 2 years | This cookie is set by Spotler and tracks an anonymous visitor ID. |
wow.schedule | persistent | 20 minutes | This cookie is set by Spotler and enables it to track the Load Balance Session Queue. |
wow.session | persistent | 20 minutes | This cookie is set by Spotler to track the Internet Information Services (IIS) session state. |
wow.utmvalues | persistent | 20 minutes | This cookie is set by Spotler and stores the UTM values for the session. UTM values are specific text strings that are appended to URLs that allow Communigator to track the URLs and the UTM values when they get clicked on. |
_ga | persistent | 2 years | This cookie is set by Google Analytics and is used to calculate visitor, session, campaign data and keep track of site usage for the site’s analytics report. It stores information anonymously and assign a randomly generated number to identify unique visitors. |
_gat | persistent | 1 minute | This cookies is set by Google Universal Analytics to throttle the request rate to limit the collection of data on high traffic sites. |
_gid | persistent | 1 day | This cookie is set by Google Analytics and is used to store information of how visitors use a website and helps in creating an analytics report of how the website is doing. The data collected including the number visitors, the source where they have come from, and the pages visited in an anonymous form. |
Performance cookies include cookies that deliver enhanced functionalities of the website, such as caching. These cookies do not store any personal information.
Cookie | Type | Duration | Description |
---|---|---|---|
cf_ob_info | persistent | 1 minute | This cookie is set by Cloudflare content delivery network and, in conjunction with the cookie ‘cf_use_ob’, is used to determine whether it should continue serving “Always Online” until the cookie expires. |
cf_use_ob | persistent | 1 minute | This cookie is set by Cloudflare content delivery network and is used to determine whether it should continue serving “Always Online” until the cookie expires. |
free_subscription_only | session | 1 year | This session cookie is served by our membership/subscription system and controls which types of content you are able to access. |
ls_smartpush | persistent | 1 month | This cookie is set by Litespeed Server and allows the server to store settings to help improve performance of the site. |
one_signal_sdk_db | persistent | Until cleared | This cookie is set by OneSignal push notifications and is used for storing user preferences in connection with their notification permission status. |
YSC | session | 1 year | This cookie is set by Youtube and is used to track the views of embedded videos. |
Leave a Reply
You must be logged in to post a comment.